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Overview

Ultimate goal: Data-driven component segmentation of raster drawings
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Motivation: Industrial Part Quotation Systems
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Motivation: Industrial Part Quotation Systems
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Literature Review: Engineering Drawing Analysis

Prior works mainly focus on pattern recognition, shape identification
and drawing retrieval.
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Diagram recognition in floor Shape identification for part Drawing retrieval or matching using
p.lans., ﬂ(?w charts and .electr1c drawings with sampled lines, pixel blocks or patches.
circuit d@grams and vibratory points, histograms or shape [Mednonogov et. al. 2000, Jiao et. al.
mechanical systems [Delalandre descriptors. [Liu et. al. 2009, 2009, Sousa et. al. 2010]
et. al, 2010, Kara et. al. 2008, Huet et. al. 2001]

Schafer et. al. 2021]
Only achieve a partial interpretation of the drawings for a specific scenario. We aim at
developing a data-driven system to analyze all the components for general analysis.



Overview

Ultimate goal: Data-driven component segmentation of raster drawings
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Requirements

A data synthesis method that:

Utilize the information stored in existing labelled examples

Generate an arbitrarily large set of synthetic drawings to train a data-driven
model for binary component segmentation (contour shape/dimension set)

The generated drawings are subjected to validity of technical rules



Related work
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Most of these manipulations
Augmentation - Basic geometric transformation, x will result in invalid image
Methods in CV filtering, random erasing and mixing. datz? mn the contex’F of
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We aim to create a parametric drawing generator that can synthesize a pool of new drawings
in a simulated manner with a handful of existing drawing examples



Algorithm Overview

The labeling for such drawings requires humans with technical training. But
vector drawings can serve to create a dataset for training a model that deploys on
raster images.
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Approach Overview

DXF Parser — >  DXF Generator Feature Extractor Classifier

Four major modules to parse existing data, generate new data, vectorize the
drawing, and predict the component type
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Our Algorithm Pipeline: Parser

DXF Parser
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Parse the information from a
given DXF drawing
Record each component based

on base points and key points
Save it as a JSON file
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Our Algorithm Pipeline: Generator

>  DXF Generator -

* Separate the dimensional

. elements from the object
( ]i% O ~. 7. contour lines
; F a ° l ‘ 1 o+ + Expand the drawing set by
o [ w & AR i %% generating new drawings
j) 1 _,{ n, h wherein new dimensional
T% . ’T N ‘ﬁ”\\ g [ elements are generated and
o T I Te T placed in novel
\ 1 L & N 11 L] o configurations.
I N | m .
7 How to ensure the validity?

12



Dimension Sets Randomization

Two designed constraints:

R4.5 /,/

C1: There should be no overlap between the generated dimension sets.
C2: The dimensions should locate outside of the contour shape if possible
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Dimension Set Randomization

—

Parse the information from a previously saved JSON file.

2. Determine the number dimension sets to be generated (+20% from original
drawing)

3. In an iterative manner:

 choose a pair of key points

« randomly generate a base point with random orientation

» conflict check with all existing generated dimensions

» conflict check with the bounding box of the contour shape.
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Our Algorithm Pipeline: Extractor

Line detection
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Island detection

Vectorized with a fine-tuned
Hough line detector to find all
the straight lines

Extracted the non-line
elements as isolated islands in
the remaining pixel space

How to unify the input components?
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Our Algorithm Pipeline: Extractor

Index | Symbol | Notion

1 X x coordinate of the upper left corner points of the bounding box.

2 Y y coordinate of the upper left corner points of the bounding box.

3 X x coordinate of the lower right corner points of the bounding box.

4 Y, y coordinate of the lower right corner points of the bounding box.

5 L Diagonal length of the bounding box of the component. The length is normalized by the
diagonal length of the image.

6 r Aspect ratio of the bounding box. length (x range)/height (y range) is used for consistency.

7 Py Percentage of black pixels within the bounding box.

8 Pyp Percentage of black pixels in the projection of the components. The components are projected
along the axis with smaller range.

9 D, Average distance of the 4 nearest neighboring components.

10 Dy Standard deviation distance of the 4 nearest neighboring components.

11 cov Coefficient of variation. The standard deviation of the distances from the black pixels in a
component to its center of gravity. This feature is introduced to indicate the symmetry.

12 Mz Zernike Moments of the components. 8 degrees are utilized to generate 25 response features.

These features are able to indicate the local gradient orientation of the components.

Inspired by [Yun, et. al. 2019, Ye
et. al. 2016, Van et. al. 2016]

For each detected component
(line/island), we design a series of
features including:

 Basic geometric info (1-6)

+ Density info (7,8)

» Contextual info (9,10)

¢ Symmetry (11)

* Local gradient (12)

In the end, each vectorized
component is converted to a 36
dimensional feature vector. The
task becomes vector classification.
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Our Algorithm Pipeline: Classifier

As a case study, we test our data augmentation method with 3 classifiers:

Classifier

e DT: A decision tree model, max depth: 10, min split: 3, metric: Gini impurity.
* RF: Arandom forest model, 40 DT models above, No. of features: square root.
¢ MLP: A multi-layer perceptron model, 2 hidden layers with 100 nodes in each.
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2500 Image
Drawings
Task: Binary Component Segmentation (contour/dimension)
Training: 2500 synthetic drawings
Test set 1 (unseen original): 7 original drawings
Test set 2 (unseen synthetic): 700 synthetic drawings
700 Image Criterion: Accuracy of the predicted label from each model
Drawings

(Unseen synthetic)
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Results

Validation  Multi-layer  Decision Random * The tree-based methods yield better

sl g aisanied e pouss results than the simple MLP model.
g"sf:"t. 76.84 8629 8752 * The performance on the unseen
nthetic . .

Y synthetic dataset is better than on the
Unsaan 2472 82 71 8378 unseen real dataset as expected
Original

* A major improvement (like 87.52 vs

Validation Multi-layer Decision Random 58.19 for RF) when our proposed
Accuracy % Perceptron Tree Forrest . ..

synthesis method is introduced
Nosynthesis 4574 56.50 5819 * (1 and C2 contribute to a marked
Unconstrained 58.03 6412  66.56 improvement by regularizing the

random dimension sets with valid
C1only 70.65 81.31 8212

prior assumptions
C2only 67.49 7784 8027 * Cl1results in a larger increase in
C1+C2 76.84 8629 8752 accuracy compared to C2



Results

Validation Multi-layer

Decision Random

Accuracy % Perceptron Tree Forrest
Unseen 76.84 86.29 87.52
Synthetic
Unseen 74.72 82.71 83.78
Original
Validation Multi-layer Decision Random
Accuracy % Perceptron Tree Forrest
No synthesis 4574 56.50 ;_58.19 I
|
|
Unconstrained 58.03 6412 66.56 |
|
|
C1only 70.65 81.31 I82.12 |
|
C2 only 67.49 77.84 :80.27 I
|
C1+C2 76.84 86.29 :87.52 I

The tree-based methods yield better
results than the simple MLP model.
The performance on the unseen
synthetic dataset is better than on the
unseen real dataset as expected

A major improvement (like 87.52 vs
58.19 for RF) when our proposed
synthesis method is introduced

C1 and C2 contribute to a marked
improvement by regularizing the
random dimension sets with valid
prior assumptions

C1 results in a larger increase in
accuracy compared to C2
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Results
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A very similar trend in accuracy as the number of drawings increases.
The rate of the increase in accuracy gradually levels out as more

synthetic drawings are generated. Negligible improvement beyond 50.

The standard deviation of tree-based methods is much less than MLP.
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Takeaways

* A novel method to synthesize a

large amount of engineering =,

Y "’,-":{
ol(@)

drawing images based on
constrained dimension set
randomization.

* Results show that the capacity of
the trained model to generalize to
unseen new geometries is
considerably improved with only a
handful of labelled examples.
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Future Work

Ultimate goal: Data-driven component segmentation of raster drawings
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Currently Exploring

* Hierarchical line/curve fitting for vectorization

@ Contour Node
@ Dimension Node
—— Perpendicular
— Parallel
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* Represent the vectorized results with component graphs based on connectivity.
The task is converted to a graph nodal labelling problem.
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Updated results
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* Our preliminary model with hierarchical vectorizations and graph

neural networks:

Models Validation Accuracy
Best RF 87.52%
GraphSAGE+Vector Graph 90.90%
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Major Challenges

Data Preparation Feature Extraction
Contour Line « ) I
) | H
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